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1. INTRODUCTION

Sophisticated analytical models are often needed to analyze and predict the dynamical
behavior of complete structures. With the proliferation of digital computers, new methods
of analysis have been developed, especially in the method of "nite elements. Once the "nite
element model of a physical system is constructed, its validity is often checked by comparing
its analytical modes of vibration with those obtained from a modal survey. If the modal
survey and the analytical predictions are in subjective agreement, then the analytical model
can be used with con"dence for future analysis. If the correlation between the two is poor,
then assuming the experimental measurements to be correct, the analytical model must be
adjusted so that the agreement between the analytical predictions and the test results is
improved. The updated model may then be considered a better representation of the
physical structure than the initial analytical model, and it can then be used with reasonable
accuracy to assess the stability and control characteristics and to predict the dynamical
responses of the structure. The above process of correcting the system matrices is known as
model updating.

In recent years, many methods have been developed to improve the quality of the
analytical "nite element models using test data. Detailed discussion of every approach is
beyond the scope of this note, and interested readers are referred to the survey papers by
Mottershead and Friswell [1] and Imregun and Visser [2]. In a recent paper [3], new
approaches are developed that use measured natural frequencies and mode shapes to
update the analytical mass and sti!ness matrices of a structure. Using the measured modes
of vibration of a mass-modi"ed structure and the initial modal survey, the mass matrix of
the system can be corrected, after which the sti!ness matrix can be updated by requiring it
to satisfy the generalized eigenvalue problem associated with the free vibration of the
structure. Manipulating the unknown system matrices into vector forms, the well-known
and readily available connectivity information can be enforced to preserve the physical
con"guration of the structure and to reduce the computational e!orts required to correct
the system matrices.

In this technical note, detailed numerical experiments will be performed to compare the
results of the mass and sti!ness updating algorithms introduced in reference [3] against
the Lagrange multipliers updating formalisms [4, 5] and the perturbation updating
approach [6]. In addition, error parameters will be introduced to gauge the quality of
the updates. The e!ects of mode incompleteness on these error parameters will also be
investigated. Finally, heuristic criterion regarding the minimum number of measured
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modes needed to ensure a su$ciently accurate updated mass or sti!ness matrix will be
established.

2. RESULTS

The Lagrange multipliers approaches [4, 5], the perturbation scheme [6] and the
proposed model updating algorithm [3] are applied to the simple system of Figure 1, whose
mass matrix is diagonal and whose sti!ness matrix is symmetric and tri-diagonal. The
analytical masses and sti!nesses are 2)000 kg and 5)000 N/m, respectively. The actual
masses and sti!nesses are given in Table 1, for N"25.

Experimentally, it is nearly impossible to measure the same number of modes as the
number of degrees of freedom of the analytical model. Thus, the measured data are said to
be incomplete. A problem unrelated to that previously described, but also commonly
referred to as &&incomplete'' occurs when the measured eigenvector contains fewer
TABLE 1

¹he actual masses (in kg) and sti+nesses (in N/m), for N"25. ¹he analytical masses and
sti+nesses are m

0
"2)000 kg and k

0
"5)000 N/m, respectively

m
actual

m
actual

k
actual

k
actual

m
1
"1)2942 m

14
"2)6722 k

1
"4)1400 k

14
"6)9877

m
2
"2)1831 m

15
"1)3355 k

2
"0)8802 k

15
"5)4973

m
3
"1)3117 m

16
"2)6680 k

3
"5)6052 k

16
"5)9483

m
4
"2)6581 m

17
"1)3899 k

4
"6)5108 k

17
"5)0320

m
5
"2)4371 m

18
"1)8632 k

5
"2)9343 k

18
"6)3608

m
6
"1)7651 m

19
"1)6231 k

6
"7)1326 k

19
"6)2726

m
7
"2)8502 m

20
"1)1578 k

7
"3)3072 k

20
"7)0572

m
8
"1)7984 m

21
"1)1439 k

8
"3)2986 k

21
"6)6026

m
9
"1)7793 m

22
"1)8189 k

9
"6)2021 k

22
"4)9326

m
10
"2)7588 m

23
"1)2320 k

10
"6)6399 k

23
"6)3932

m
11
"2)1221 m

24
"1)6389 k

11
"5)9489 k

24
"5)8004

m
12
"1)1613 m

25
"2)2254 k

12
"6)3203 k

25
"6)5935

m
13
"2)0234 * k

13
"3)3357 *

Figure 1. Simple chain of coupled oscillators.
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co-ordinates than are available from the analytical model. In this case, the measured
eigenvectors must "rst be expanded before the proposed algorithms can be applied. Various
mode expansion techniques can be found in references [2, 7]. In this note, it will be assumed
that all the co-ordinates of the eigenvectors can be measured, and we will reserve the word
&&incomplete'' to mean when the test measurements contain fewer modes than those of the
analytical model. In practice, because the number of measured modes, N

e
, needed to

perform the update is almost always less than degrees of freedom, N, of the analytical
model, of considerable interest is the e!ect of N

e
on the quality of the updated systems

matrices.
Theoretically, N

e
may include any modes of vibration of the system. However, because

the lower modes are typically easier to measure experimentally than the higher ones, the
parameter N

e
will be used in the subsequent analysis to represent the lowest N

e
measured

modes of the structure. Thus, when N
e
"5, the "rst "ve measured modes will be used to

perform the update.
To assess the accuracy of the mass updating algorithm as a function of N

e
, the following

relative error parameter for the updated masses is introduced:

e
m
"

Dm
update

!m
actual

D
Dm

actual
D

, (1)

where m
update

and m
actual

are vectors of length N whose elements are the updated and the
actual masses, respectively, and Da D represents the Euclidean norm of the vector a. In order
to compare the improvement of the updated masses over their initial analytical values,
a relative error parameter for the analytical masses is also introduced:

(e
m
)
0
"

Dm
analytical

!m
actual

D
Dm

actual
D

. (2)

Similar expressions can be de"ned for the relative error parameters for the updated and
analytical sti!nesses, denoted by e

k
and (e

k
)
0
, respectively.

Once the structural parameters of the system have been corrected, the eigenvalues of the
updated system are compared with those obtained during a modal survey to judge the
accuracy of the updating algorithms. Relative error parameters for the eigenvalues (the
natural frequencies squared) can be similarly de"ned as those in equations (1) and (2). For
an updated model to be judged better than the initial analytical model, we must have
e
m
((e

m
)
0
, e

k
((e

k
)
0

and ej((ej)0 . For an updated model to be considered accurate, e
m
, e

k
and ej must be su$ciently small. Additionally, the smaller the error parameters are, the
better the updated model is.

To execute the proposed mass updating algorithm, lumped masses of magnitude 0)2 kg
are added to masses 1 and 25, which correspond to the two ends of the structure of Figure 1.
Figure 2 shows the variations of e

m
, obtained by using the proposed mass updating

algorithm, the Lagrange multipliers scheme and the perturbational method, as a function of
N

e
. Also shown is the corresponding (e

m
)
0
, which is independent of N

e
and is given by the

horizontal line. Note the improvement in the updated mass parameters as N
e
increases, for

both the proposed and the Lagrange multipliers schemes. The proposed method returns
updated masses that are increasingly more accurate than the Lagrange multipliers
approach as N

e
increases. For these two approaches, the experimental results are consistent

with physical intution: the more information that is gathered about the physical system, the



Figure 2. The mass error parameter, e
m
, obtained by using the proposed mass updating algorithm (j), the

Lagrange multipliers scheme (m), and the perturbation method (r), as a function of the number of measured
modes, N

e
. The dotted horizontal line represents the mass error parameter of the analytical model, (e

m
)
0
.
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better the updated model becomes. The perturbation approach, on the other hand, returns
updated masses that deviate considerably from those of the physical system for large N

e
. In

fact, for N
e
*8, the perturbation scheme returns adjusted masses that are worst than the

initial analytical values.
The e

m
curve for the proposed mass-updating scheme (see Figure 2) also reveals the

minimum number of measured modes that are needed in order to achieve a certain level of
accuracy. From numerical experiments it was observed that more accurate solutions are
obtained when the least-squares system becomes overdetermined. Because updating the
mass matrix of Figure 1 involves solving a least-squares problem of size N2

e
]N (see

reference [3] for detailed discussion), to render the problem overdetermined requires
N

e
*JN measured modes. Thus, for N"25, at least "ve measured modes are needed to

update the masses to ensure su$cient accuracy. Because the criterion regarding the
minimum N

e
needed to perform the mass update is formulated empirically, for the mass

parameters of Table 1, accurate updated mass matrix is obtained for Ne*6. The numerical
results of Figure 2 also indicate that there is a saturation point beyond which additional
information does not lead to any signi"cant improvement in the corrected mass matrix.

Once the masses have been adjusted, the analytical sti!ness matrix can be corrected by
requiring it to satisfy the generalized eigenvalue problem that governs the free vibration of
the system. Figure 3 shows the variations of e

k
, obtained by the Lagrange multipliers

formalism, the perturbation approach, and the proposed updating scheme, as a function of
N

e
. Also shown is the corresponding (e

k
)
0
, which does not vary with N

e
and is given by the

horizontal line. Note that e
k
decreases as N

e
increases for the proposed sti!ness updating

algorithm. The observed results imply that the larger the knowledge space that is known



Figure 3. The sti!ness error parameter, e
k
, obtained by using the proposed sti!ness updating algorithm (j),the

Lagrange multipliers scheme (m), and the perturbation method (r), as a function of the number of measured
modes, N

e
. The dotted horizontal line represents the sti!ness error parameter of the analytical model, (e

k
)
0
.
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about the physical system, the more accurate the updated sti!nesses are. The Lagrange
multipliers approach returns updated sti!nesses that are slightly better than the initial
analytical sti!ness values for N

e
up to 22, after which it returns updated sti!nesses that are

worst than the analytical ones. For N
e
*2, the perturbation approach returns updated

sti!nesses that become increasingly worst as N
e

increases.
Because updating the sti!ness matrix of Figure 1 entails the solution of a least-square

problem of size N2
e
](3N!2) (see reference [3] for detailed discussion), to render the

problem overdetermined requires N
e
*J3N!2 measured modes. Thus, for N"25, at

least nine measured modes are needed to update the sti!nesses to ensure su$cient accuracy
based on the heuristics criterion. Because the criterion regarding the minimum N

e
needed to

perform the sti!ness update is formulated empirically via numerical experiments, for the
sti!ness parameters of Table 1, 12 instead of nine measured modes are required to update
the sti!nesses such that the resulting e

k
is nearly zero. As before, the numerical results

indicate that there is a saturation point beyond which additional information does not lead
to any signi"cant improvement in the corrected sti!ness matrix.

Depending on the set of system parameters, sometimes more and other times less
measured modes than those predicted heuristically may be needed to perform the mass and
sti!ness updates. Nevertheless, using the empirical criteria regarding the smallest N

e
needed

to perform the update always leads to adjusted system matrices whose modes of vibration
are substantially closer to the measured data than they were initially.

Figure 4 shows the resulting error parameters for the updated eigenvalues, ej , as
a function of N

e
. The corresponding (ej )0 is also illustrated for comparison. Interestingly,

while the perturbation updating schemes return updated mass and sti!ness matrices that



Figure 4. The eigenvalue error parameter, ej , obtained by using the proposed mass/sti!ness updating
algorithms (j),, the Lagrange multipliers scheme (m) and the perturbation method (r), as a function of the number
of measured modes, N

e
. The dotted horizontal line represents the eigenvalue error parameter of the analytical

model, (ej )0.
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deviate substantially from those of the actual system, for a large set of measure modes, the
resulting eigenvalues are close to those obtained during a modal survey. For N

e
)13, on the

other hand, the eigenvalue error parameters for the perturbation approach are nearly
identical to those of the analytical system, implying that the updated eigenvales are merely
perturbations of the analytical ones. The eigenvalues obtained by using the Lagrange
multipliers formalism track the measured eigenvalues well only when the set of measured
modes is large. In fact, there exists a region (6)N

e
)16) in which the Lagrange multipliers

scheme returns updated eigenvalues that are worst than the initial analytical eigenvalues. As
expected, because the measured eigensolutions are used as constraints in formulating the
Lagrange multipliers updating algorithms, for N

e
"25, the Lagrange multipliers approach

returns updated eigenvalues that are identical to those obtained during a modal survey.
Consider now the updated eigenvalues obtained by using the proposed mass and sti!ness
correction schemes. Note how well the updated eigenvalues obtained by the proposed
algorithms track the actual system, especially as N

e
becomes large. In fact, for N

e
*12, the

proposed model updating routines return updated mass and sti!ness matrix that are nearly
identical to the physical structure, and whose eigenvalues are nearly the same as those
obtained during a modal survey.

The proposed mass and sti!ness updating schemes require slightly more work and cause
some down-time, because the modes of vibration for the mass-modi"ed system need to be
measured in order to correct the mass matrix of the structure. The additional time and
e!ort, however, are a relatively small price to pay for the ability to update the analytical
model so that its adjusted system matrices track those of the actual system accurately.
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The e!ects of mode incompleteness on the quality of various mass and sti!ness updating
algorithms are studied. Speci"cally, the results of the newly developed updating schemes,
based on using the modal surveys of the initial system and the corresponding mass-modi"ed
structure, are compared to those obtained by using the Lagrange multipliers formalism and
the perturbation approach. The proposed updating schemes, which assume the connectivity
information to be correct, are very for giving when it comes to deviations of the analytical
system from the physical structure. Numerical experiments show that the proposed
algorithms return updated mass and sti!ness matrices that are more accurate than those
obtained by using either the Lagrange multipliers approach or the perturbation method.
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